3.41 \(\int \frac{\csc (e+f x)}{(a+b \sin (e+f x)) \sqrt{c+d \sin (e+f x)}} \, dx\)

Optimal. Leaf size=146 \[ \frac{2 \sqrt{\frac{c+d \sin (e+f x)}{c+d}} \Pi \left (2;\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )|\frac{2 d}{c+d}\right )}{a f \sqrt{c+d \sin (e+f x)}}-\frac{2 b \sqrt{\frac{c+d \sin (e+f x)}{c+d}} \Pi \left (\frac{2 b}{a+b};\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )|\frac{2 d}{c+d}\right )}{a f (a+b) \sqrt{c+d \sin (e+f x)}} \]

[Out]

(2*EllipticPi[2, (e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(a*f*Sqrt[c + d*Sin[e
+ f*x]]) - (2*b*EllipticPi[(2*b)/(a + b), (e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)
])/(a*(a + b)*f*Sqrt[c + d*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.488343, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {2941, 2807, 2805} \[ \frac{2 \sqrt{\frac{c+d \sin (e+f x)}{c+d}} \Pi \left (2;\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )|\frac{2 d}{c+d}\right )}{a f \sqrt{c+d \sin (e+f x)}}-\frac{2 b \sqrt{\frac{c+d \sin (e+f x)}{c+d}} \Pi \left (\frac{2 b}{a+b};\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )|\frac{2 d}{c+d}\right )}{a f (a+b) \sqrt{c+d \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

(2*EllipticPi[2, (e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(a*f*Sqrt[c + d*Sin[e
+ f*x]]) - (2*b*EllipticPi[(2*b)/(a + b), (e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)
])/(a*(a + b)*f*Sqrt[c + d*Sin[e + f*x]])

Rule 2941

Int[1/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)
])), x_Symbol] :> Dist[1/c, Int[1/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x], x] - Dist[d/c, Int[1/(Sqrt[a +
b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\csc (e+f x)}{(a+b \sin (e+f x)) \sqrt{c+d \sin (e+f x)}} \, dx &=\frac{\int \frac{\csc (e+f x)}{\sqrt{c+d \sin (e+f x)}} \, dx}{a}-\frac{b \int \frac{1}{(a+b \sin (e+f x)) \sqrt{c+d \sin (e+f x)}} \, dx}{a}\\ &=\frac{\sqrt{\frac{c+d \sin (e+f x)}{c+d}} \int \frac{\csc (e+f x)}{\sqrt{\frac{c}{c+d}+\frac{d \sin (e+f x)}{c+d}}} \, dx}{a \sqrt{c+d \sin (e+f x)}}-\frac{\left (b \sqrt{\frac{c+d \sin (e+f x)}{c+d}}\right ) \int \frac{1}{(a+b \sin (e+f x)) \sqrt{\frac{c}{c+d}+\frac{d \sin (e+f x)}{c+d}}} \, dx}{a \sqrt{c+d \sin (e+f x)}}\\ &=\frac{2 \Pi \left (2;\frac{1}{2} \left (e-\frac{\pi }{2}+f x\right )|\frac{2 d}{c+d}\right ) \sqrt{\frac{c+d \sin (e+f x)}{c+d}}}{a f \sqrt{c+d \sin (e+f x)}}-\frac{2 b \Pi \left (\frac{2 b}{a+b};\frac{1}{2} \left (e-\frac{\pi }{2}+f x\right )|\frac{2 d}{c+d}\right ) \sqrt{\frac{c+d \sin (e+f x)}{c+d}}}{a (a+b) f \sqrt{c+d \sin (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 4.01595, size = 203, normalized size = 1.39 \[ -\frac{2 i \sec (e+f x) \sqrt{-\frac{d (\sin (e+f x)-1)}{c+d}} \sqrt{-\frac{d (\sin (e+f x)+1)}{c-d}} \left ((a d-b c) \Pi \left (\frac{c+d}{c};i \sinh ^{-1}\left (\sqrt{-\frac{1}{c+d}} \sqrt{c+d \sin (e+f x)}\right )|\frac{c+d}{c-d}\right )+b c \Pi \left (\frac{b (c+d)}{b c-a d};i \sinh ^{-1}\left (\sqrt{-\frac{1}{c+d}} \sqrt{c+d \sin (e+f x)}\right )|\frac{c+d}{c-d}\right )\right )}{a c f \sqrt{-\frac{1}{c+d}} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

((-2*I)*((-(b*c) + a*d)*EllipticPi[(c + d)/c, I*ArcSinh[Sqrt[-(c + d)^(-1)]*Sqrt[c + d*Sin[e + f*x]]], (c + d)
/(c - d)] + b*c*EllipticPi[(b*(c + d))/(b*c - a*d), I*ArcSinh[Sqrt[-(c + d)^(-1)]*Sqrt[c + d*Sin[e + f*x]]], (
c + d)/(c - d)])*Sec[e + f*x]*Sqrt[-((d*(-1 + Sin[e + f*x]))/(c + d))]*Sqrt[-((d*(1 + Sin[e + f*x]))/(c - d))]
)/(a*c*Sqrt[-(c + d)^(-1)]*(b*c - a*d)*f)

________________________________________________________________________________________

Maple [A]  time = 1.517, size = 254, normalized size = 1.7 \begin{align*} -2\,{\frac{c-d}{a \left ( da-cb \right ) c\cos \left ( fx+e \right ) \sqrt{c+d\sin \left ( fx+e \right ) }f}\sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{c-d}}}\sqrt{-{\frac{ \left ( -1+\sin \left ( fx+e \right ) \right ) d}{c+d}}}\sqrt{-{\frac{d \left ( 1+\sin \left ( fx+e \right ) \right ) }{c-d}}} \left ( b{\it EllipticPi} \left ( \sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{c-d}}},-{\frac{ \left ( c-d \right ) b}{da-cb}},\sqrt{{\frac{c-d}{c+d}}} \right ) c+{\it EllipticPi} \left ( \sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{c-d}}},{\frac{c-d}{c}},\sqrt{{\frac{c-d}{c+d}}} \right ) ad-{\it EllipticPi} \left ( \sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{c-d}}},{\frac{c-d}{c}},\sqrt{{\frac{c-d}{c+d}}} \right ) bc \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sin(f*x+e)/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x)

[Out]

-2*(c-d)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-(-1+sin(f*x+e))*d/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)*(b*El
lipticPi(((c+d*sin(f*x+e))/(c-d))^(1/2),-(c-d)*b/(a*d-b*c),((c-d)/(c+d))^(1/2))*c+EllipticPi(((c+d*sin(f*x+e))
/(c-d))^(1/2),(c-d)/c,((c-d)/(c+d))^(1/2))*a*d-EllipticPi(((c+d*sin(f*x+e))/(c-d))^(1/2),(c-d)/c,((c-d)/(c+d))
^(1/2))*b*c)/a/(a*d-b*c)/c/cos(f*x+e)/(c+d*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sin \left (f x + e\right ) + a\right )} \sqrt{d \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)*sin(f*x + e)), x)